24x^2+16x-3=0

Simple and best practice solution for 24x^2+16x-3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24x^2+16x-3=0 equation:



24x^2+16x-3=0
a = 24; b = 16; c = -3;
Δ = b2-4ac
Δ = 162-4·24·(-3)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{34}}{2*24}=\frac{-16-4\sqrt{34}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{34}}{2*24}=\frac{-16+4\sqrt{34}}{48} $

See similar equations:

| 24x+16x-3=0 | | 55x+3=625x+2 | | 2(2x-3)=6x+2-2x-9 | | 4.4g+10=1.4g+22 | | b45×-2=0 | | 5(m-1)=3m+10+5m | | 2x+1x+6=3x+6 | | (3x-3)+(x-17)+(x)=180 | | 23=v/5+17 | | 6y=9=3(2y+3) | | -3f(-3f-6=) | | 9x²-1=(3x+1)(3x-1) | | -b/10=18 | | r+25/7=5 | | (2x+48)+(x-12)+(x)=180 | | p+2/5=20 | | -10.1=w+4.3 | | 20+8y+20y=-19y-3(-16y-2) | | 5+8g=37 | | 12u-7u=45 | | 9q-33=39 | | (2x+48)+(x-12)=180 | | 8/x+2=4/9 | | -2c-4=-10 | | 1x+1x+0=2x+0 | | 9-6r+3r=24+2r | | x+38/9=15 | | 3x+1+2x+5=36 | | 4=c-86/3 | | -6/9=4/w | | 0x+0x+0=0x+0 | | 9d+8=98 |

Equations solver categories